

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

1 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

CW14pinButterflyDriver1500

Control Application Guide

Version 1.0.8

Date: 30-June-2017

(This picture is for illustrative purposes only and details may vary)

Innolume GmbH
Konrad-Adenauer-Allee 11

44263 Dortmund

GERMANY

Phone: +49 (0) 231 47730-200

Email: info@innolume.com

Web: www.innolume.com

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

2 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

TABLE OF CONTENTS

1. OVERVIEW 4

2. SYSTEM REQUIREMENTS 4

3. INSTALLATION INSTRUCTIONS 4

4. GRAPHICAL USER INTERFACE (GUI) 4

4.1 Communication 6

4.2 Software Enable 6

4.3 Settings 7

4.4 System Status and Alarm 8

5. REMOTE COMMANDS 9

5.1 Laser Current 9
5.1.1 Read Laser Current Tolerance 9
5.1.2 Read Laser Current Setpoint 10
5.1.3 Read Laser Current Setpoint Stored 10
5.1.4 Write Laser Current Setpoint 11
5.1.5 Store Laser Current Setpoint 11

5.2 TEC 11
5.2.1 Read Temperature Tolerance 12
5.2.2 Read Temperature Setpoint 13
5.2.3 Read Temperature Setpoint Stored 13
5.2.4 Write Temperature Setpoint 13
5.2.5 Store Temperature Setpoint 14

5.3 Enable, Overtemperature Alarm and Power Indicator Levels 14
5.3.1 Configure IOState Register 15
5.3.2 Write IOState Register 15
5.3.3 Read IOState Register 15

5.4 Python Example 16

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

3 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

IMPORTANT NOTES - PLEASE READ

1. This guide provides general information about Innolume´s

CW14pinButterflyDriver1500 Control Application, and the remote commands of the

CW14pinButterflyDriver1500.

2. For a detailed description of the CW14pinButterflyDriver1500, refer to the User’s

Guide, Hardware.

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

4 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

1. Overview
This guide provides general information about Innolume´s CW14pinButterflyDriver1500

Control Application, particularly the computer system requirements for the Control

Application, the installation instructions and a general overview of the

CW14pinButterflyDriver1500 Control Application. In addition, this guide contains the remote

commands for control of the CW driver.

2. System Requirements
The following computer system requirements are needed to install the

CW14pinButterflyDriver1500 Control Application:

- Microsoft Windows
TM

 operating system (version XP, Vista, 7, 8, 8.1 or 10);

- USB port or COM port;

- Graphic card capable of a minimal resolution of 800x600 and 256 colors;

- Minimum of 1 GB of system RAM (recommended);

- 650 kB free on disk (plus additional space for Microsoft .NET Framework and for

Microsoft Visual C++ Redistributable).

3. Installation Instructions
The installation of the CW14pinButterflyDriver1500 Control Application and USB drivers is

simple and straightforward. Before connecting the CW driver to the computer, follow these

steps:

1) Close all running applications before proceeding. With the device unplugged, run the

installation package (Setup.exe).

2) Follow the instructions on the screen. The CW14pinButterflyDriver1500 Control

Application requires the Microsoft .NET Framework and the Microsoft Visual C++

Redistributable. The setup will install compatible versions of the Microsoft .NET

Framework and of the Microsoft Visual C++ Redistributable if not already installed on

the computer.

3) Once the CW14pinButterflyDriver1500 Control Application is installed, you will be

prompted for configuring your connection with the CW14pinButterflyDriver1500

device.

4) Connect the CW14pinButterflyDriver1500 device to the computer.

5) If the device is not automatically detected, restart the computer.

4. Graphical User Interface (GUI)
Figure 1 shows the CW14pinButterflyDriver1500 Control Application GUI. It displays the

CW14pinButterflyDriver1500 control functions and the user can, through this GUI:

1) Enable or disable the laser current (software enable);

2) Change and store the setpoint temperature for the TEC control;

3) Set the laser current limit;

4) Change and store the laser current setpoint;

5) Read the state of the overtemperature alarm, the system status and the power indicator

levels.

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

5 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

Figure 1 CW14pinButterflyDriver1500 Control Application GUI

Figure 2 shows the “About” dialog window, displaying information about the software

Control Application and the company contacts. The user can access this window using the

command, located in the top right corner of the GUI window.

Figure 2 CW14pinButterflyDriver1500 Control Application GUI, About Window

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

6 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

4.1 Communication

The CW14pinButterflyDriver1500 Control Application starts as shown in Figure 3.

Figure 3 CW14pinButterflyDriver1500 Control Application GUI, startup

The communication between the CW driver and the application can be performed by USB or

RS-232. The CW14pinButterflyDriver1500 Control Application finds and lists the COM ports

available and, when connected to the computer, the CW driver is detected as COM port and

the communication between the software and the device is possible. Figure 4 illustrates the

recognition of the COM ports available by the application.

Figure 4 CW14pinButterflyDriver1500 Control Application GUI, connection to CW driver

While the CW14pinButterflyDriver1500 is connecting, the application reads the current

values applied to the device and updates the corresponding fields.

4.2 Software Enable

The user can enable/disable the CW driver laser current by software, using the software

enable switch contained in the application (Figure 5). The label below presents the current

state of the software enable.

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

7 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

Figure 5 CW14pinButterflyDriver1500 Control Application GUI, software enable

The default state of the software enable switch is the actual state of enable (EN_ext).

4.3 Settings

The settings of CW14pinButterflyDriver1500 Control Application are shown in Figure 6, and

Table 1 presents the allowed ranges for different settings.

Figure 6 CW14pinButterflyDriver1500 Control Application GUI, settings

Setting
Range

Minimum Maximum

Temperature setpoint 5 °C 55 °C

Laser current limit 0 mA 1500 mA

Laser current setpoint 0 mA Laser current limit

Table 1 Ranges for settings of CW14pinButterflyDriver1500 Control Application

The application of the settings is independent of the laser enable state.

The “Store” check boxes allow storing the temperature and the laser current setpoints, and

after the power is cycled, the temperature and the laser current keep the last setpoint stored

respectively. In the initial power-up, the digital potentiometers setpoints are at midscale (128),

for temperature and for laser current. The “Apply” buttons writes and stores (if the box is

checked) the current setpoint value to the CW driver. The application displays also the digital

potentiometer setpoint for temperature and for laser current. The digital potentiometer is a

256-position digitally-controlled variable resistor, and the digital temperature and laser current

setpoints displayed are the digitized values calculated from the correspondent digital

potentiometer setpoint.

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

8 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

4.4 System Status and Alarm

The CW14pinButterflyDriver1500 Control Application allows the user to read the states of

the overtemperature alarm, of the system status and of the power indicator levels, as shown in

Figure 7.

Figure 7 CW14pinButterflyDriver1500 Control Application GUI, system status and alarm

This information is updated when the user clicks on the “Update display” button, on any

“Apply” button, or on the “ON” or “OFF” buttons of the software enable switch.

The meaning of the icons used for the overtemperature alarm is:

 - Alarm is OFF

- Alarm is ON

For system status, the meaning of the icons is:

 - System is disabled

- System is enabled

Relatively to the power indicator levels, the lower level is the lower power (level 1), and the

higher level is the higher power (level 5). The meaning of the icons used is:

 - Level is OFF

 - Level is ON

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

9 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

5. Remote Commands
The user can communicate with the CW driver by USB or RS-232 interfaces. The serial data

format is fixed: one start bit, eight data bits, no parity bit, and one stop bit. The default baud

rate is 9600 bit/s, it can be changed if needed
1
.

The remote commands of CW14pinButterflyDriver1500 are based in ASCII characters. After

a power-up, the CW driver will send two continuous bytes to the user to indicate a start-up

condition. These two bytes are, in hexadecimal representation, 0x4F and 0x4B (‘O’ and ‘K’ in

ASCII, respectively).

The CW14pinButterflyDriver1500 has a time-out feature for unfinished commands sequence.

The delay between any two bytes of data coming from the user should be less than 655 ms. If

this condition is not met, the CW driver will time-out and clear the receive buffer, and then it

starts to wait for the next command from the user.

Unrecognized commands are ignored by the CW14pinButterflyDriver1500.

5.1 Laser Current

The laser current setpoint is controlled through a digital potentiometer, which is a 256-

position (8-bit) digitally-controlled variable resistor. The relation between the laser current

and the digital potentiometer are presented in the functions below, with its parameters

described in Table 2.

𝐼(𝑏𝑖𝑡𝑠𝑒𝑡) =
𝑘𝑎𝑝𝑝𝑎 × 𝑟 × 𝑅𝑇

255

𝑏𝑖𝑡𝑠𝑒𝑡
 +

𝑟 × 𝑅𝑇

𝐾

 + 𝑥0

𝑏𝑖𝑡𝑠𝑒𝑡(𝐼) =
255

𝑘𝑎𝑝𝑝𝑎 × 𝑟 × 𝑅𝑇

𝐼− 𝑥0
−

𝑟 × 𝑅𝑇

𝐾

Parameter Description Range / Value

I Laser current setpoint x0 – 1500 (mA)

bitset Digital potentiometer setpoint 0 – 255

RT Total resistance of digital potentiometer 10 x (tolerance / 100 + 1) (kΩ)

kappa Calibration constant 104.17

K Calibration constant 106.493

r Calibration constant 1.63172

x0 Calibration constant 26.7004

Table 2 Parameters description for laser current calculation

The value of total resistance of digital potentiometer, RT, used in previous functions, is the

nominal value (10 kΩ) corrected for tolerance read from the CW driver, to allow more

precision in calculations of laser current and of digital potentiometer setpoints.

5.1.1 Read Laser Current Tolerance

The read laser current tolerance command allows reading the tolerance of nominal resistance

of digital potentiometer of laser current. Its format is the following:

1
 SC18IM700IPW: Master I²C-bus controller with UART interface.

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

10 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

 CW14pinButterflyDriver1500 receives (where ‘S’ is 0x53 and ‘P’ is 0x50, in hexadecimal

representation):

‘S’ | 0x9C | 0x01 | 0x3E | ‘S’ | 0x9D | 0x02 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data 0 | Data 1

Data 0 Data 1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Sign 2
6

2
5
 2

4
 2

3
 2

2
 2

1
 2

0
 2

-1
 2

-2
 2

-3
 2

-4
 2

-5
 2

-6
 2

-7
 2

-8

Sign Integer number Decimal number

Table 3 Read tolerance for laser current

As shown in Table 3, the MSB of data byte 0 contains the sign (0 = + and 1= −) and the seven

LSBs designate the integer portion of the tolerance. In the data byte 1, all eight data bits

indicate the decimal portion of tolerance. Note the decimal portion has a limited accuracy of

0.1%.

Example:

 Data 0 = 1000 0001

 MSB: 1 = -

 7 LSB: 000 0001 = 1

 Data 1 = 1101 1100

 8 LSB: 1101 1100 = 220 x 2
-8

 = 0.86

 Tolerance = -1.86%

 Rounded tolerance = -1.9%

 RT = 9.810 kΩ

5.1.2 Read Laser Current Setpoint

The read laser current setpoint command allows reading the digital potentiometer setpoint of

laser current. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x9C | 0x01 | 0x00 | ‘S’ | 0x9D | 0x01 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data

Example:

 Data = 1000 0000 = Digital potentiometer setpoint = 128

 Laser current setpoint = 819.0 mA (with RT = 10 kΩ)

5.1.3 Read Laser Current Setpoint Stored

The read laser current setpoint stored command allows reading the digital potentiometer

setpoint of laser current stored. Its format is the following:

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

11 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x9C | 0x01 | 0x20 | ‘S’ | 0x9D | 0x01 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data

Example:

 Data = 0100 1010 = Digital potentiometer setpoint stored = 74

 Laser current setpoint stored = 499.0 mA (with RT = 10 kΩ)

5.1.4 Write Laser Current Setpoint

The write laser current setpoint command allows writing the digital potentiometer setpoint of

laser current. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x9C | 0x02 | 0x00 | Data | ‘P’

Example:

 Laser current setpoint to write = 1000 mA

 Digital potentiometer setpoint = 160 = Data = 1010 0000 (with RT = 10 kΩ)

5.1.5 Store Laser Current Setpoint

The store laser current setpoint command allows storing the digital potentiometer setpoint of

laser current applied currently. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x9C | 0x01 | 0xC0 | ‘P’

5.2 TEC

As the laser current, the temperature setpoint is also defined with the use of a 256-position (8-

bit) digital potentiometer. The following equations present the relation between the

temperature and the digital potentiometer, and its parameters are described in Table 4.

𝑇(𝑅𝑁𝑇𝐶𝑟𝑜𝑢𝑛𝑑) =
1

1

𝛽
 × log (

𝑅𝑁𝑇𝐶𝑟𝑜𝑢𝑛𝑑

𝑅𝑇0
) +

1

𝑇0

− 𝐾0

𝑅𝑁𝑇𝐶𝑟𝑜𝑢𝑛𝑑(𝑏𝑖𝑡𝑠𝑒𝑡) = 𝑅210 ×
𝑅218 + 𝑅𝑇 ×

𝑏𝑖𝑟𝑎𝑛𝑔𝑒−𝑏𝑖𝑡𝑠𝑒𝑡

𝑏𝑖𝑡𝑟𝑎𝑛𝑔𝑒

𝑅𝑇 + 𝑅219 − 𝑅𝑇 ×
𝑏𝑖𝑟𝑎𝑛𝑔𝑒−𝑏𝑖𝑡𝑠𝑒𝑡

𝑏𝑖𝑡𝑟𝑎𝑛𝑔𝑒

𝑏𝑖𝑡𝑠𝑒𝑡(𝑅𝑊𝐴) = 𝑏𝑖𝑡𝑟𝑎𝑛𝑔𝑒 −
𝑏𝑖𝑡𝑟𝑎𝑛𝑔𝑒 × 𝑅𝑊𝐴

𝑅𝑇

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

12 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

𝑅𝑊𝐴(𝑅𝑁𝑇𝐶) =
𝑅𝑇 + 𝑅218 + 𝑅219

𝑅210

𝑅𝑁𝑇𝐶
+ 1

− 𝑅218

𝑅𝑁𝑇𝐶(𝑇) = 𝑅𝑇0 × 𝑒
𝛽 × (

1

𝑇+ 𝐾0
−

1

𝑇0
)

Parameter Description Range / Value

T Temperature setpoint -7.6 – 66.6 (°C)

bitset Digital potentiometer setpoint 0 – 255

RT Total resistance of digital potentiometer 10 x (tolerance / 100 + 1) (kΩ)

β Calibration constant 3375

bitrange Calibration constant 256

K0 Calibration constant 273.16

R210 Calibration constant 10

R218 Calibration constant 3.3

R219 Calibration constant 3.3

RT0 Calibration constant 10

T0 Calibration constant 25 + K0

Table 4 Parameters description for temperature calculation

For more precision in calculations of temperature and of digital potentiometer setpoints, the

nominal resistance of digital potentiometer value (10 kΩ) should be corrected for tolerance

read from the CW driver.

5.2.1 Read Temperature Tolerance

The read temperature tolerance command allows reading the tolerance of nominal resistance

of digital potentiometer of temperature. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x30 | 0x01 | 0x3E | ‘S’ | 0x31 | 0x02 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data 0 | Data 1

Data 0 Data 1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Sign 2
6

2
5
 2

4
 2

3
 2

2
 2

1
 2

0
 2

-1
 2

-2
 2

-3
 2

-4
 2

-5
 2

-6
 2

-7
 2

-8

Sign Integer number Decimal number

Table 5 Read tolerance for temperature

Table 5 shows the bit description for the data bytes of the tolerance. The data byte 0 has the

sign (0 = + and 1 = –) (MSB) and the integer portion (7 LSB), and the data byte 1 designates

the decimal portion of tolerance, with a limited accuracy of 0.1%.

Example:

 Data 0 = 1000 0001

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

13 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

 MSB: 1 = -

 7 LSB: 000 0001 = 1

 Data 1 = 1101 1100

 8 LSB: 1101 1100 = 220 x 2
-8

 = 0.86

 Tolerance = -1.86%

 Rounded tolerance = -1.9%

 RT = 9.810 kΩ

5.2.2 Read Temperature Setpoint

The read temperature setpoint command allows reading the digital potentiometer setpoint of

temperature. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x30 | 0x01 | 0x00 | ‘S’ | 0x31 | 0x01 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data

Example:

 Data = 1000 0000 = Digital potentiometer setpoint = 128

 Temperature setpoint = 25.00 °C (with RT = 10 kΩ)

5.2.3 Read Temperature Setpoint Stored

The read temperature setpoint stored command allows reading the digital potentiometer

setpoint of temperature stored. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x30 | 0x01 | 0x20 | ‘S’ | 0x31 | 0x01 | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data

Example:

 Data = 0110 1100 = Digital potentiometer setpoint stored = 108

 Temperature setpoint stored = 20.11 °C (with RT = 10 kΩ)

5.2.4 Write Temperature Setpoint

The write temperature setpoint command allows writing the digital potentiometer setpoint of

temperature. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x30 | 0x02 | 0x00 | Data | ‘P’

Example:

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

14 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

 Temperature setpoint to write = 30.0 °C

 Digital potentiometer setpoint = 148 = Data = 1001 0100 (with RT = 10 kΩ)

5.2.5 Store Temperature Setpoint

The store temperature setpoint command allows storing the digital potentiometer setpoint of

temperature applied currently. Its format is the following:

 CW14pinButterflyDriver1500 receives:

‘S’ | 0x30 | 0x01 | 0xC0 | ‘P’

5.3 Enable, Overtemperature Alarm and Power Indicator Levels

Figure 8 presents a simplified schematic about the enable configuration.

Figure 8 Enable configuration

The CW14pinButterflyDriver1500 is only enabled when the overtemperature shutdown (OS)

alarm is high (alarm is not active) and the software and external enable are not pulling down.

The CW driver has a register called IOState Register, which bit description is shown in Table

6.

IOState Register

D7 D6 D5 D4 D3 D2 D1 D0

PL5 SE / EB

PL3 PL4 IE OS PL2 PL1

Table 6 IOState Register bit desciption

Using this register, the user can:

 Read:

o The internal enable (IE), it is the state of the device;

o The enable bus (EB);

o The overtemperature alarm;

o The power indicator levels (PL) (it needs to be configured).

 Write:

o The software enable (SE) (it needs to be configured);

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

15 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

o The power indicator levels (it needs to be configured).

By default, the data bits of IOState Register are not configured to allow the writing of the

software enable and of the power indicator levels. So, to be able to these functions, the user

must configure the IOState Register using the configure IOState Register command.

5.3.1 Configure IOState Register

The configure IOState Register command allows configuring the IOState Register to allow the

writing of the software enable and of the power indicator levels. Its format is the following:

 CW14pinButterflyDriver1500 receives (where ‘W’ is 0x57, in hexadecimal

representation):

‘W’ | 0x02 | 0x5F | 0x03 | 0xEF | ‘P’

5.3.2 Write IOState Register

The write IOState Register command allows writing the software enable and the power

indicator levels of the IOState Register. Its format is the following:

 CW14pinButterflyDriver1500 receives (where ‘O’ is 0x4F, in hexadecimal

representation):

‘O’ | Data | ‘P’

Data

D7 D6 D5 D4 D3 D2 D1 D0

PL5 SE

PL3 PL4 X X PL2 PL1

Table 7 Write IOState Register

As shown in Table 7, using this command does not change the states of the internal enable

(D3) and of the overtemperature alarm (D2) (they are don’t cares, “X”).

For software enable, writing:

‘0’ - Software enable OFF

‘1’ - Software enable ON

Relatively to the power indicator levels, writing:

‘0’ - Level OFF

‘1’ - Level ON

Note that for this command has effect, the user must configure first the IOState Register using

the configure IOState Register command described previously.

5.3.3 Read IOState Register

The read IOState Register command allows reading the internal enable, the enable bus, the

overtemperature alarm and the power indicator levels of the IOState Register. Its format is the

following:

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

16 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

 CW14pinButterflyDriver1500 receives (where ‘I’ is 0x49, in hexadecimal representation):

‘I’ | ‘P’

 CW14pinButterflyDriver1500 transmits:

Data

Data

D7 D6 D5 D4 D3 D2 D1 D0

PL5 EB

PL3 PL4 IE OS PL2 PL1

Table 8 Read IOState Register

Reading the internal enable as:

‘0’ - System is disabled

‘1’ - System is enabled

For enable bus, reading:

‘0’ - Enable bus is OFF

‘1’ - Enable bus is ON

Relatively to the overtemperature alarm, reading as:

‘0’ - Alarm is ON

‘1’ - Alarm is OFF

The power indicator of CW14pinButterflyDriver1500 has five levels (PL1 – PL5), which the

power level 1 is the lower power, and the power level 5 is the higher power. Reading the

power indicator level as:

‘0’ - Level is OFF

‘1’ - Level is ON

Once the power indicator levels are Schmitt triggered inputs that also have a glitch

suppression circuit, the user should follow the next steps to read correctly its states:

1) Set low level for all power indicator levels (using the write IOState Register command);

2) Set high level for all power indicator levels (using the write IOState Register command);

3) Read the power indicator levels (using the read IOState Register command).

5.4 Python Example

The following Python script is a simple example how to control the

CW14pinButterflyDriver1500. It has three parameters (constants) to set:

 Laser current setpoint (I);

 Temperature setpoint (T);

 Software enable (OnOff).

The code executes the next functions:

1) Enable / Disable the laser current, dependent of the OnOff parameter;

2) Set the laser current setpoint defined (I);

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

17 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

3) Set the temperature setpoint defined (T);

4) Read the IOState Register.

The Python example is based in version Python 2.7.11, that is available for downloading in

https://www.python.org/downloads/release/python-2711/. For serial communication, it uses

the Python Serial Port Extension version pyserial 2.7, available for downloading in

https://pypi.python.org/pypi/pyserial/2.7.

Python example:

import serial

import time

import math

Parameters to set

I = 100 # Laser current setpoint, in mA

T = 25.0 # Temperature setpoint, in C

OnOff = 0x00 # Software enable; For OFF, OnOff = 0x00, for ON, OnOff = 0x40

Laser current

RT_I = 10.0 # Nominal resistance of digital potentiometer, in kOhm. For

improve precision, correct for tolerance (see CW14pinButterflyDriver1500

Control Application Guide)

kappa = 104.17 # Calibration constant

K = 106.493 # Calibration constant

r = 1.63172 # Calibration constant

x0 = 26.7004 # Calibration constant

bitset_I = int(round(255 / ((kappa * r * RT_I) / (I - x0) - (r * RT_I) /

K), 0)) # Digital potentiometer setpoint

print("I = " + str(I))

print("bitset_I = " + str(bitset_I))

TEC

RT_T = 10.0 # Nominal resistance of digital potentiometer, in kOhm. For

improve precision, correct for tolerance (see CW14pinButterflyDriver1500

Control Application Guide)

Beta = 3375.0 # Calibration constant

bitrange = 256 # Calibration constant

K0 = 273.16 # Calibration constant

R210 = 10.0 # Calibration constant

R218 = 3.3 # Calibration constant

R219 = 3.3 # Calibration constant

RT0 = 10.0 # Calibration constant

T0 = 25.0 + K0 # Calibration constant

RNTC = RT0 * math.exp(Beta * (1 / (T + K0) - 1 / T0))

RWA = (RT_T + R218 + R219) / (R210 / RNTC + 1) - R218

bitset_T = int(round(bitrange - (bitrange * RWA) / RT_T, 0)) # Digital

potentiometer setpoint

print("T = " + str(T))

print("bitset_T = " + str(bitset_T))

Serial port

ser = serial.Serial('COM22') # Open serial port which is connected to the

device

print("Serial port used: " + ser.name) # Check which port was really used

Configure IOState Register to allow the writing of the software enable

and of the power indicator levels

https://www.python.org/downloads/release/python-2711/
https://pypi.python.org/pypi/pyserial/2.7

Spec:
Revision:
Page:

CW14pinButterflyDriver1500
v1.0.8

18 of 18

Contents subject to change without notice All rights reserved Confidential and Proprietary

ser.write((chr(0x57) + chr(0x02) + chr(0x5F) + chr(0x03) + chr(0xEF) +

chr(0x50))) # Configure IOState Register command

time.sleep(0.050) # Wait 50 ms

Set the software enable and set the power indicator levels OFF

ser.write((chr(0x4F) + chr((OnOff & 0x40)) + chr(0x50))) # Write IOState

Register command

Set the laser current setpoint

ser.write((chr(0x53) + chr(0x9C) + chr(0x02) + chr(0x00) + chr(bitset_I) +

chr(0x50))) # Write laser current setpoint command

Set the temperature setpoint

ser.write((chr(0x53) + chr(0x30) + chr(0x02) + chr(0x00) + chr(bitset_T) +

chr(0x50))) # Write temperature setpoint command

Reset hysteresis for power indicator levels (and set the software enable)

ser.write((chr(0x4F) + chr((OnOff & 0x40)) + chr(0x50))) # Write IOState

Register command; 1st step: set low level for all power indicator levels

ser.write((chr(0x4F) + chr(((OnOff & 0x40) + 0xB3)) + chr(0x50))) # Write

IOState Register command; 2nd step: set high level for all power indicator

levels

time.sleep(0.500) # Wait 500 ms

Read the internal enable, the enable bus, the overtemperature alarm and

the power indicator levels of the IOState Register

ser.write((chr(0x49) + chr(0x50))) # Read IOState Register command

time.sleep(0.050) # Wait 50 ms

IOState_Register = ser.read(1) # Read data byte

print("IOState Register: PL5 | EB | PL3 | PL4 | IE | OS | PL2 | PL1")

print("IOState Register (bin) = 0b" +

"{0:08b}".format(ord(IOState_Register)))

Serial port

ser.close() # Close serial port

